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Abstract 

Load forecasting plays an essential role both in developed and developing 

countries for policymakers and related organizations. It helps an electrical utility 

to make important decisions including decisions on purchasing and generating 

electrical power, load switching, and infrastructure development.  In recent years 

Artificial Neural Networks (ANNs) have been applied for short-term power load 

forecasting (STPLF). This work presents a study of STPLF for the Iraqi national 

grid by means of Radial Basis Function NN(RBFNN) and Multi-Layer 

Perceptron NN (MLPNN) model. Inputs to the ANN are past loads and the output 

of the ANN is the load forecast for given days. Historical load data obtained from 

the Control and Operation Office at the Iraqi ministry of electricity has been split 

into two main parts, where 50% of the data are used for the training and the other 

50% has been devoted to test the trained network. Simulations have been 

accomplished in MATLAB environment, where the data have been preprocessed 

and rearranged. Lastly, the simulation results proved that the predicted load 

values are following closely the actual load. 

Keywords: Artificial intelligence, Energy consumption, Load demand, Load 

forecasting, Load prediction, Neural networks, Radial basis function.  
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1.  Introduction 

Power load forecasting (PLF) precisely assumes a vital part for electrical operations 

in an ambitious climate made by the electric business deregulation. PLF assists an 

electrical industry by settling on significant resolutions on producing, exchanging, 

and buying electrical energy, load swapping, and substructure improvement. 

Besides, PLF is vital for power providers, monetary establishments, and others 

associated with electrical power productions, transmission, delivery, and marketing 

[1, 2]. Additionally, PLF is assuming a critical part in diminishing the production 

cost, also it is important for the power system reliability.  

Since in energy systems it is necessary to schedule the power generation of the 

next day, day-ahead short-term power load forecasting (STPLF) is an important 

everyday task for “power dispatch”. Its precision influences monetary activity and 

system reliability significantly. Underestimation of STPLF prompts inadequate 

reserve assimilation planning and, thus, expands the working expense by utilizing 

costly peaking units. Furthermore, the overestimation of STPLF prompts the 

superfluously enormous reserve assimilation, which is correspondingly associated 

with high working expenses. It is assessed that in the British energy grid, each 1% 

increment in the prediction error is related to an increment in working expenses of 

10 million pounds every year [3]. 

The STPLF forecaster calculates the estimated load for each hour of the day, 

the daily peak load, or the daily or weekly energy generation. STLF is important to 

electrical suppliers because they can use the forecasted load to control the number 

of generators in operation, to startup new units when the forecasted load is high. 

The research methods of STPLF can be classified into two classifications: or 

artificial intelligence methods and statistical parametric methods. In statistical 

techniques, after training the historical data, conditions can be acquired depicting 

the connection among the load and its relative factors, while artificial intelligence 

strategies attempt to mimic the way of thinking and reasoning of the human beings, 

to obtain information from the past-experience and predict future load [3]. 

As said previously, the study methods of STPLF can be partitioned into two 

classes: statistical and artificial intelligence methods. The statistical methods 

incorporate state-space [4], general exponential smoothing [5], stochastic time 

series [6], multiple linear regression [7]. Lately, support vector regression [8, 9], 

which is an encouraging statistical learning technique, has likewise been 

implemented to STPLF and has proven great outcomes.  

Evolutionary algorithm [10], fuzzy interface [11], artificial neural network 

(ANN) [12], and Expert systems [13], belong to the computational intelligence 

category. Moreover, [14] applied Wavelet Neural Network, Particle Swarm 

Optimization, and Ensemble Empirical Mode Decomposition to short-term load 

forecasting. The authors of [15] presented an ensemble ANN predictive model to 

improve STPLF. Different from existing studies, a bagged-boosted ANN has been 

trained by combining both bagging and boosting techniques. An SVM model, 

hybrid of mode decomposition, and PSO, was present for predicting short-term 

Electrical Energy Demand of the market of Australian electricity [16].  

In [17], a forecasting model for the next-day Albania electricity demand was 

presented based on Fuzzy Logic. Authors in [18] suggested a model for forecasting 

electricity demand in South African based on an adaptive neuro-fuzzy inference 
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system (ANFIS). In South African, the short-term demand for electricity during the 

peaking period (i.e., from 6:00 to 8:00 pm) has been forecasted based on partially 

linear additive quantile regression models [19].  

The work in [20] forecasted the Spanish demand for electricity using 

Autoregressive integrated moving average model. A less computational time 

achievement is obtained in this study with an enhancement in the forecasting of short-

term of electricity demand. A dynamic mode decomposition was proposed in [21] to 

create an STPLF model, the suggested model proved better accuracy and stability as 

compared with other forecasting methods. Load forecasting using the time series 

model for the forecast of the load is adopted in [22]. Table 1 summarizes the 

aforementioned studies in comparison with the main objectives of the current work. 

Table 1. Summary of the literature survey. 

Reference Method used 

[4] state-space 

[5] general exponential smoothing 

[6] stochastic time-series 

[7] multiple linear regression 

[8, 9] support vector regression 

[10] Evolutionary algorithm 

[11] fuzzy interface 

[12] artificial neural network 

[13] Expert systems 

[14] 
Wavelet Neural Network, Particle Swarm Optimization, and 

Ensemble Empirical Mode Decomposition 

[15] ensemble ANN predictive model 

[16] SVM model 

[17] Fuzzy Logic 

[18] adaptive neuro-fuzzy inference system (ANFIS) 

[19] linear additive quantile regression models 

[20] Autoregressive integrated moving average model 

[21] dynamic mode decomposition 

Proposed work RBFNN 

Short-term power load forecasting will be investigated in detail in this paper 

considering the Iraqi high voltage power grid as a case study. The data for Iraq high 

voltage power grid that will be used in the developed STPLF algorithms are 

obtained from Al-Ameen Control Center. This research work involves:  

i. Study and analysis of the short-term power load forecasting problem on Iraqi 

high voltage power grid. 

ii. Modeling STPLF using Radial basis function artificial neural networks 

(RBFNNs).  

iii. Developing algorithms for short-term power load forecasting problem using 

RBFNNs technique which would produce a load forecasting that is as close 

as possible to the actual one. 

iv. Applying the developed STPLF algorithms on the Iraqi High voltage Power 

grid and comparing the forecasted results with the actual ones. 

https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
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This paper is structured as follows. Section 2 introduces the requirements of the 

STPLF systems and the challenges that face them. The structure of the RBFNN, its 

operation, and parameters training are presented in Section 3. The proposed STPLF 

using RBFNN is demonstrated in Section 4. Three case studies have been 

investigated to simulate the proposed RBFNN-based STPLF procedure in Section 

5. Finally, the paper is concluded in Section 6. 
 

2. Requirements and Challenges of a good STPLF System  

The greater part of the load or demand supervision programs utilized by electrical 

utilities involve STPLF units. Each utility expects to have a dependable STPLF 

program for the economic operations of the energy system. The robustness and 

reliability of the system principally rely upon the precision of the load forecasting. 

There are other significant necessities for a decent STPLF framework. These 

necessities consider the accompanying: automatic forecasting report generation, 

automatic bad data detection, evaluation of the obtained forecast, automatic 

performance, timely forecast, friendly interface, automatic data access, accuracy, fast 

speed. On the other hand, several difficulties exist in short-term power load 

forecasting, these include the precise hypothesis of the input-output relationship, 

generalization of experts’ experience, the forecasting of anomalous days, inaccurate 

or incomplete forecasted weather data, less generalization ability caused by 

overfitting. Moreover, Difficulties getting accurate data on consumption behavior due 

to changes in factors such as pricing and the corresponding demand based on such a 

price change. The utility may suffer losses if they do not understand and decide on an 

acceptable margin of error in short term load forecasting. The load forecasting has 

both commercial and technical implications and if not done properly, it may lead to 

bad planning and inefficient operation of the electrical power systems. 

3.  Radial Basis Function Artificial Neural Networks  

A new technique is suggested in this study for addressing the STPLF issue utilizing 

RBFNNs. The additional new training data is treated by the RBFNN without 

requiring retraining, which is one of the merits of RBFNNs. The output linear layer 

and a hidden layer of the RBFNNs have the capability of adapting their connection 

weights efficiently without getting stuck into a local minimum. A less 

computational time is needed for the training of the RBFNNs since just the second 

layer’s weights have to be adapted based on the error signal. The momentum and 

adaptive learning rates can be used to accelerate the training of RBFNNs.   

3.1. Radial basis function network structure and operation  

The RBFNN model includes three layers; the output, hidden, and input layers. The 

nodes inside each layer are completely connected to the past layer, as shown in Fig. 

1. Each node in the input layer is assigned an input variable, while the connection 

weights between the input and hidden layers are all set to unity.  The transfer 

functions of the hidden layer nodes are the radial basis functions, hence the name, 

RBFNNs. They are similar to the sigmoid activation functions that are used in the 

multi-layer perceptron NNs. They are represented by the bell-shaped curve in the 

hidden nodes shown in Fig. 1. While the output layer gives a linear combination of 

output weights. RBFNN is a useful tool for the analysis of the relationships between 

a major sequence and the other comparative sequences in a given set. In comparison 
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with MLPNN, RBFNN has better approximation properties and faster training 

velocity, in addition to solving the local minima problem [21]. 

 

Fig. 1. Schematic representation of an RBFNN. 

The two parameters that describe each activation function in the hidden layer 

of the RBNFF are known as the width (normalization parameter) and the center. 

Similar to another feedforward NNs, a given RBFNN has to adapt its parameters 

during the training process, if the hidden layer nodes span the training data input 

space, that leads to optimum performance, where too overlapping or too sparse 

functions may cause performance degradation of the load forecasting. During the 

testing or simulation mode, input vectors are imposed at the input layer of the 

RBFNN and the output vectors are calculated based on this. The most widely used 

form of RBF is the Gaussian kernel function given by 

𝑓𝑖(𝑥) = 𝑒𝑥𝑝 (
−‖𝑥−𝑐𝑖‖

2𝜎𝑖
2 )                            (1) 

where 𝑐𝑖 and 𝜎𝑖 are, respectively, the center and the width of the Gaussian potential 

function of the ith neuron in the hidden layer, 𝑥 is the input pattern. The connection 

between the hidden and output units is the linear weighted sums. The output 𝑂𝑘𝑝  for 

the pth incoming input pattern is expressed using of the kth output node,  

𝑂𝑘𝑝 = ∑ 𝜔𝑘𝑗
ℎ𝑙𝑛
𝑗=1 𝑓𝑗(𝑥𝑝) + 𝜔𝑘𝑜                              (2) 

where 𝜔𝑘𝑗  is the weight between kth output node and  jth RBFNN unit, ℎ𝑙𝑛 is the 

number of hidden layer neurons, 𝜔𝑘𝑜 is the bias term at the kth output node. In this 

paper, 𝜔𝑘𝑜 is taken as zero. 

3.2. Calculations of the RBFNN center (𝒄𝒊) and the width (𝝈𝒊)  

The centers (𝑐𝑖) of radial basis functions for each hidden node define input vectors 

causing maximal activation of these units. The widths (𝜎𝑖 ) of the radial basis 

functions of each hidden node determine the radii of the areas of the input space 

around the centers where activations of these nodes are significant. In the first step, 

the center vectors (𝑐𝑖) of the RBFNN in the hidden layer are chosen. This step can 

be performed in several ways; centers can be randomly sampled from some set of 

examples, or they can be determined using k-means clustering. Note that this step 

https://en.wikipedia.org/wiki/K-means_clustering


366        M. O. Ali et al. 

 
 
Journal of Engineering Science and Technology        February 2022, Vol. 17(1) 

 

is unsupervised. So, assign randomly some of the training inputs (x1i , x2i , . . . , xji) 

to each hidden node centers [23], i.e.,  

𝑐𝑗𝑖 = 𝑥𝑗𝑖                    (3) 

where 𝑗 = 1, … . , ℎ𝑙𝑛, 𝑖 = 1, … . , 𝑖𝑙𝑛, and 𝑖𝑙𝑛 is the number of input patterns. Each 

training pattern will be assigned to the “nearest cluster”. This can be realized by 

finding the Euclidean distance between the training patterns and cluster centers 

[24]. The Euclidean distance between 𝑥𝑝𝑖 and weight vectors (𝑐𝑗𝑖) of each unit is 

found by, 

𝑑𝑗 = √∑ (𝑥𝑝𝑖 − 𝑐𝑗𝑖)
2𝑖𝑙𝑛

𝑖=1   j=1,…, hln                     (4) 

where 𝑥𝑝𝑖  is the ith variable of the pth input pattern, and 𝑐𝑗𝑖  is the center from 

neuron j to input i. When all the training patterns are assigned, the new cluster 

centers will be determined by averaging the values of each cluster center. This 

process will be repeated until the cluster center values are not changing. The width 

of each hidden neuron in the RBFNN is calculated based on the following [22], 

𝜎𝑗 = √
1

ℎ𝑙𝑛
∑ ∑ (𝑐𝑗𝑖 − 𝑐𝑘𝑖)

2𝑖𝑙𝑛
𝑖=1

ℎ𝑙𝑛
𝑘=1                      (5) 

where 𝑐𝑗𝑖  and 𝑐𝑘𝑖 are the ith entries of the centers of jth and kth hidden nodes. 

3.3. Computation of the weights between hidden neurons and output nodes 

Once the centers and the widths of the radial basis functions are obtained, the next 

stage of the training begins. For this, we can use supervised learning-based 

techniques such as the least-squares method or the gradient method to update the 

weights between the hidden layer and the output layer. The training process is 

presented in the following steps. Firstly, impose an input vector x from the training 

set, then, calculate the outputs of hidden layer neurons 𝑓𝑖(𝑥) . Furthermore, 

Compute the network output vector 𝑂𝑘,  compare it with target vector T. Adjust 

each weight in [w] in a direction to reduce the difference. For this, the following is 

used and it is expressed as, 

𝜔𝑘𝑗(𝑛 + 1) = 𝜔𝑘𝑗(𝑛) + 𝛽(𝑡𝑘 − 𝑦𝑘)𝑓𝑗(𝑥)                (6) 

where 𝜔𝑘𝑗is the weight between the kth output layer neuron and  the jth hidden 

layer unit, 𝑦𝑘  is the kth output of the output layer neuron, tk is the targeted output 

for kth the output layer neuron, and 𝛽 is an adapting rate parameter. Repeat this 

process for each input pattern and the entire procedure is repeated until an 

acceptable error is obtained. 

4. Short-Term Power Load Forecasting Using RBFNN 

The following steps describe the short-term power load forecasting (STPLF) problem: 

(1) Data collection. Data collection is a very important process for accurate load 

forecasting. The data that can be collected includes the daily load records, 

including 8760 hourly load data in each year.  

(2) Data Pre-processing. The collected data are normalized to the range [0, 1]. 

The actual load has been normalized as follows,  

https://en.wikipedia.org/wiki/Unsupervised_learning
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𝐿𝑠 =
𝐿 

𝐿𝑚𝑎𝑥
                                                                                                            (7) 

where 𝐿𝑠 is the normalized or scaled load, 𝐿 is the actual load in MW, 𝐿𝑚𝑎𝑥  

is the maximum load in MW. 

(3) RBFNN construction. The RBFNN is created using (Newrb) function in 

MATLAB; the network has one output layer, one input layer, and one hidden 

layer. The functions radbas" and "purelin", are used for hidden and output 

layers of the RBFNN respectively, where radbas is a MATLAB function that 

simulates the Gaussian bell-shaped function in the hidden layer of the 

RBFNN, while purelin is a MATLAB function that represents a linear 

combination at the output layer of the RBFNN. The number of neurons in 

output and input layers was carefully associated with the sample, in 

accordance with the historical data, however, the number of hidden layer 

neurons can be calculated from the experimental formula,  

ℎ𝑙𝑛 = √(𝑖𝑙𝑛 + 𝑜𝑙𝑛) + 𝑎                                                                                     (8) 

where   𝑖𝑙𝑛 is the number of the input layer neurons, oln is the number of in 

the output layer neurons, ℎ𝑙𝑛 is the number of the hidden layer neurons, 𝑎 is 

a constant 1< a <10. 

(4) RBFNN Initialization. Let [𝜔] be the connecting weights between the output 

and hidden layers. Set the values of the weights to small random values in the 

range        [ − 1, 1] [23], 

[𝜔]𝑜 = [random weights]; [∆𝜔]𝑜 = [0]                (9) 

where ∆𝜔 is the  incremental change in the weights. 

(5) RBFNN centers and width calculations. Use K-mean clustering algorithm to 

calculate the centers of the hidden layer neurons of the RBFNN. Moreover, 

calculate the width of each neuron in the hidden layer using formula (5). 

(6) RBFNN Training. The RBFNN is trained with previous data according to (6). 

In this work, the training data were from the period (2010) to (2011). The 

training is stopped until a minimum error has been achieved or the maximum 

number of iterations has been reached. 

(7) RBFNN simulation. The network is tested or simulated at the end of the 

training. This procedure is realized by calling the “sim” function in 

MATLAB. 

(8) RBFNN Post-processing. De-normalizing the output from the tested network 

to compare it with the actual data.  

(9) RBFNN Validation. The last stage is achieved by invoking a performance 

function to compute  and save the performance error statistics, e.g., MSE as 

given below 

𝑀𝑆𝐸 =
1

𝑁
∑ [𝐿𝑎(𝑛) − 𝐿𝑝(𝑛)]2𝑁

𝑖=1                                                                   (10)  

where 𝐿𝑎(𝑛) is the value of the actual load, 𝐿𝑝(𝑛) is the predicted load value, 

and 𝑁 is the number of data points. A flowchart of the entire procedure is 

shown in Fig. 2. 
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Fig. 2. Flowchart of RBFNN implementation and optimization for STPLF. 

5. Numerical Simulations and Results 

In this section, a model of RBFNN is introduced as a case study to predict the 

weekend output load for specific months in 2012 for certain governorates 

(Baghdad, Basra, and Mosul) in Iraq. The suggested configuration for estimating 

load demands comprised of four inputs for training and one output. Figure 3 shows 

the proposed structure of RBFNN models to forecast weekends. For the three cities 

(Baghdad, Basra, and Mosul ) taken as a case study, all the data for the energy 

network have been gathered from the Iraqi Operation and Control Office for 3 years 

from 2010 to 2012.  

 

Fig. 3. The suggested RBFNN STPLF model to predict a weekend load. 
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5.1. Forecasting a weekend of Friday for January in 2012 for 

Baghdad Governorate. 

The data used for the training and testing of the RBFNN are listed in Table 2; they 

represent the daily power consumption for Baghdad city.  The data used in the 

training belong to the period 7-27 Jan 2011, while the data used in the testing belong 

to the period 6-26 Jan 2012. The target vector of the training set was the daily power 

consumption for the day Fri 28, Jan 2011. Table 3 presents the forecasted values 

for a weekend of Friday in January 2012 for Baghdad city using both Multi-layer 

perceptron NN (MLPNN) and RBFNN and actual Load values and are plotted 

against each other in Fig. 4. It can be seen from Table 3 that the forecasted load 

values produced by the  RBFNN are very closer to the actual load values than those 

predicted by the MLPNN. Moreover, Fig. 4 depicts the forecasted load for Baghdad 

city using both RBFNN and MLPNN and proves that the load curves predicted by 

the RBFNN are closely following the actual load curve with a minimum MSE of 

1.42 × 10−4 while the MSE of the MLPNN was 0.0035.  

Table 2. The testing and training data for predicting  

a weekend of Friday in January 2012 for Baghdad city. 

 Training data 

(MW) 

Training 

Target 

Testing data 

(MW) 

Actual  

o/p 

(MW) 

D
a

te
 

F
ri

, 
0
7

 J
a

n
, 
1
1

 

F
ri

, 
1
4

 J
a

n
, 
1
1

 

F
ri

, 
2
1

 J
a

n
, 
1
1

 

T
h

u
, 
2

7
 J

a
n

, 
1

1
 

F
ri

, 
2
8

 J
a

n
, 
1
1

 

F
ri

, 
0
6

 J
a

n
, 
1
2

 

F
ri

, 
1
3

 J
a

n
, 
1
2

 

F
ri

, 
2
0

 J
a

n
, 
1
2

 

T
h

u
, 
2

6
 J

a
n

, 
1

2
 

F
ri

, 
2
7

 J
a

n
, 
1
2
 

1 2058 2284 2057 2088 1956 2314 2529 2891 2493 2384 

2 2060 2289 2068 2090 1987 2256 2466 2820 2431 2324 

3 2019 2245 2016 2051 1944 2227 2435 2785 2400 2294 

4 1927 2165 1939 1964 1869 2256 2466 2820 2431 2324 

5 2048 2292 2090 2084 1992 2314 2529 2891 2493 2384 

6 2290 2545 2346 2322 2222 2457 2686 3067 2647 2532 

7 2367 2625 2398 2406 2302 2429 2655 3032 2616 2503 

8 2435 2673 2405 2538 2343 2544 2780 3173 2740 2622 

9 2436 2669 2388 2446 2322 2601 2843 3243 2802 2681 

10 2416 2667 2428 2447 2326 2615 2859 3261 2817 2696 

11 2435 2665 2442 2455 2317 2615 2859 3261 2817 2696 

12 2508 2765 2514 2538 2396 2687 2938 3349 2894 2770 

13 2472 2725 2543 2518 2356 2673 2922 3331 2879 2755 

14 2431 2677 2490 2480 2361 2673 2922 3331 2879 2755 

15 2546 2672 2482 2478 2346 2673 2922 3331 2879 2755 

16 2614 2709 2535 2519 2409 2630 2875 3278 2832 2711 

17 2702 2789 2571 2585 2511 2716 2969 3384 2925 2800 

18 2834 2952 2789 2743 2712 2774 3032 3455 2987 2860 

19 2624 2747 2567 2577 2511 2716 2969 3384 2925 2800 

20 2550 2671 2489 2458 2444 2687 2938 3349 2894 2770 

21 2519 2634 2429 2409 2393 2630 2875 3278 2832 2711 

22 2277 2511 2291 2289 2274 2572 2812 3208 2771 2651 

23 2199 2429 2231 2208 2189 2508 2749 3137 2709 2592 

24 2158 2388 2241 2168 2155 2472 2681 3043 2643 2554 
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Table 3. Predicted and Actual load using MLPNN and RBFNN  

models for Friday weekend in January 2012 for Baghdad Governorate. 

No. of hours 

Forecasted 

output using 

MLPNN(MW) 

Forecasted 

output using 

RBFNN(MW) 

Actual  

output 

(MW) 

1 2240.5 2420.1 2384 

2 2215.4 2359.5 2324 

3 2199 2329.3 2294 

4 2215.4 2359.5 2324 

5 2240.5 2420.1 2384 

6 2310.4 2572.2 2532 

7 2291.8 2541.8 2503 

8 2389.6 2663.6 2622 

9 2458 2724.3 2681 

10 2475.5 2739.5 2696 

11 2475.5 2739.5 2696 

12 2552.9 2815.2 2770 

13 2539.4 2800.1 2755 

14 2539.4 2800.1 2755 

15 2539.4 2800.1 2755 

16 2492.6 2754.7 2711 

17 2576.3 2845.3 2800 

18 2609.3 2905.4 2860 

19 2576.3 2845.3 2800 

20 2552.9 2815.2 2770 

21 2492.6 2754.7 2711 

22 2423 2694 2651 

23 2358.4 2631.1 2592 

24 2312.5 2567.9 2554 

MSE 0.0035 1.42E-04 
 

 
Fig. 4. Forecasted and Actual load using MLPNN and RBFNN  

of Friday weekend in January 2012 for Baghdad Governorate. 

5.2. Forecasting a weekend of Friday for January in 2012 for Basra 

Governorate 

The data used for the training and testing of the RBFNN are listed in Table 4, they 

represent the daily power consumption for Basra city. The data used in the training 
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belong to the period 7-27 Jan 2011, while the data used in the testing belong to the 

period 6-26 Jan 2012. The target vector of the training set was the daily power 

consumption for the day Fri 28, Jan 2011.  

Table 5 presents the forecasted values for a weekend of Friday on 27 Jan 2012 

for Basra city using both multi-layer perceptron NN (MLPNN) and RBFNN and 

actual Load values and are plotted against each other in Fig. 5. It can be seen from 

Table 5 that the forecasted load values produced by the  RBFNN are very closer to 

the actual load values than those predicted by the MLPNN.  

Moreover, Fig. 5 depicts the forecasted load for Baghdad city using both 

RBFNN and MLPNN and proves that the load curve predicted by the RBFNN is 

closely following the actual load curve with a minimum MSE of 1.05×10-4 while 

the MSE of the MLPNN is 0.0021. 

Table 4. The testing and training data for predicting  

Friday weekend in January 2012 for Basra Governorate. 

 Training data 
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F
ri

, 
2
7
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, 
1
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1 1006 1029 1014 991 965 786 859 964 844 813 

2 1006 1029 1014 991 965 767 838 940 823 793 

3 994 1016 1001 979 953 757 828 928 813 783 

4 970 991 977 955 930 767 838 940 823 793 

5 1006 1029 1014 991 965 786 859 964 844 813 

6 1079 1103 1087 1063 1034 834 912 1022 895 863 

7 1103 1128 1111 1087 1058 824 901 1011 885 853 

8 1115 1140 1123 1098 1069 863 943 1058 926 893 

9 1115 1140 1123 1098 1069 882 964 1081 947 912 

10 1115 1140 1123 1098 1069 886 969 1087 952 917 

11 1115 1140 1123 1098 1069 886 969 1087 952 917 

12 1139 1165 1148 1122 1093 910 996 1116 978 942 

13 1127 1152 1136 1110 1081 906 990 1110 973 937 

14 1115 1140 1123 1098 1069 906 990 1110 973 937 

15 1115 1140 1123 1098 1069 906 990 1110 973 937 

16 1127 1152 1136 1110 1081 891 975 1093 957 922 

17 1151 1177 1160 1134 1104 920 1006 1128 988 952 

18 1212 1239 1221 1194 1162 939 1027 1152 1009 972 

19 1151 1177 1160 1134 1104 920 1006 1128 988 952 

20 1127 1152 1136 1110 1081 910 996 1116 978 942 

21 1115 1140 1123 1098 1069 891 975 1093 957 922 

22 1079 1103 1087 1063 1034 872 954 1069 937 902 

23 1055 1078 1062 1039 1011 853 933 1046 916 883 

24 1042 1066 1050 1027 1000 839 917 1028 901 868 
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Table 5. Forecasted and actual load using MLPNN and RBFNN  

models for Friday weekend in January 2012 for Basra Governorate. 

No. of 

hours 

forecasted 

output for 

MLPNN 

(MW) 

forecasted 

output for 

RBFNN 

(MW) 

Actual 

output 

(MW) 

1 873.5 824.7574 813 

2 857.3 804.6587 793 

3 849.5 794.6104 783 

4 857.3 804.6587 793 

5 873.5 824.7574 813 

6 917.4 875.0155 863 

7 908.2 864.9628 853 

8 946.3 905.1769 893 

9 966.7 925.2866 912 

10 971.9 930.3143 917 

11 971.9 930.3143 917 

12 998.7 955.4539 942 

13 993.3 950.4258 937 

14 993.3 950.4258 937 

15 993.3 950.4258 937 

16 977.2 935.3421 922 

17 1009.8 965.5103 952 

18 1032.4 985.6237 972 

19 1009.8 965.5103 952 

20 998.7 955.4539 942 

21 977.2 935.3421 922 

22 956.4 915.2315 902 

23 936.5 895.1226 883 

24 922.1 880.0421 868 

MSE 0.002135479 1.05E-04  

 

Fig. 5. forecasted and actual load using MLPNN and RBFNN  

of Friday weekend in January 2012 for Basra Governorate. 

5.3. Forecasting a weekend of Friday for January in 2012 for Mosul 

Governorate. 

The data used for the training and testing of the RBFNN are listed in Table 6, they 

represent the daily power consumption for Mosul city.  The data used in the training 
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belong to the period 7-27 Jan 2011, while the data used in the testing belong to the 

period 6-26 Jan 2012. The target vector of the training set was the daily power 

consumption for the day Fri 28, Jan 2011.  

Table 7 presents the forecasted values for a weekend of Friday on 27 Jan 2012 

for Mosul city using both multi-layer perceptron NN (MLPNN) and RBFNN and 

actual Load values and are plotted against each other in Fig. 6. It can be seen from 

Table 7 that the forecasted load values produced by the  RBFNN are very closer to 

the actual load values than those predicted by the MLPNN.  

Moreover, Fig. 6 depicts the forecasted load for Mosul city using both RBFNN 

and MLPNN and proves that the load curve predicted by the RBFNN is closely 

following the actual load curve with a minimum MSE of 1.19×10-4 while the MSE 

of the MLPNN is 8.55×10-4. 

Table 6. The training and testing data for predicting  

Friday weekend in January 2012 for Mosul Governorate. 
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F
ri
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7
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1 915 936 922 902 878 846 925 1037 909 876 

2 915 936 922 902 878 825 903 1012 886 854 

3 904 925 911 891 867 815 891 999 875 843 

4 882 902 889 869 846 825 903 1012 886 854 

5 915 936 922 902 878 846 925 1037 909 876 

6 981 1003 989 967 941 898 982 1101 964 929 

7 1004 1026 1011 989 962 887 970 1088 953 918 

8 1015 1037 1022 999 973 929 1015 1139 997 961 

9 1015 1037 1022 999 973 949 1038 1164 1019 982 

10 1015 1037 1022 999 973 954 1044 1170 1025 988 

11 1015 1037 1022 999 973 954 1044 1170 1025 988 

12 1037 1060 1044 1021 994 980 1072 1202 1053 1014 

13 1026 1049 1033 1010 983 975 1066 1196 1047 1009 

14 1015 1037 1022 999 973 975 1066 1196 1047 1009 

15 1015 1037 1022 999 973 975 1066 1196 1047 1009 

16 1026 1049 1033 1010 983 960 1049 1177 1031 993 

17 1048 1071 1055 1032 1005 991 1083 1214 1064 1025 

18 1103 1127 1111 1086 1058 1011 1106 1240 1086 1046 

19 1048 1071 1055 1032 1005 991 1083 1214 1064 1025 

20 1026 1049 1033 1010 983 980 1072 1202 1053 1014 

21 1015 1037 1022 999 973 960 1049 1177 1031 993 

22 981 1003 989 967 941 939 1027 1151 1008 972 

23 959 981 967 945 920 918 1004 1126 986 950 

24 948 970 955 934 909 903 987 1107 970 934 
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Table 7. Forecasted and actual load using MLPNN and RBFNN  

models for Friday weekend in January 2012 for Mosul Governorate. 

No. of hours 

forecasted 

output for 

MLPNN 

(MW) 

forecasted 

output for 

RBFNN 

(MW) 

Actual 

output 

(MW) 

1 924 887.8 876 

2 906.9 866.2 854 

3 898.3 855.5 843 

4 906.9 866.2 854 

5 924 887.8 876 

6 967.6 941.9 929 

7 958.6 931.1 918 

8 995.6 974.4 961 

9 1014.9 996.1 982 

10 1019.6 1001.5 988 

11 1019.6 1001.5 988 

12 1040.8 1028.5 1014 

13 1036.9 1023.1 1009 

14 1036.9 1023.1 1009 

15 1036.9 1023.1 1009 

16 1024.2 1006.9 993 

17 1048.1 1039.3 1025 

18 1060.7 1060.8 1046 

19 1048.1 1039.3 1025 

20 1040.8 1028.5 1014 

21 1024.2 1006.9 993 

22 1005.3 985.2 972 

23 986 963.6 950 

24 972.1 947.3 934 

MSE 8.55E-04 1.19E-04  

 

Fig. 6. forecasted and Actual load using MLPNN and RBFNN  

of Friday weekend in January 2012 for Mosul Governorate. 

5.4. Discussion 

This study presents a simulation of the STPLF  problem for the Iraqi national grid 

using two neural networks, i.e., RBFNN and MLPNN. Training stops when any of 

these conditions occur: 

• The maximum number of epochs (repetitions) is reached. 

• The maximum amount of time has been exceeded. 
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• Performance has been minimized to the goal. 

The momentum term and learning rate have a very substantial effect on learning 

convergence. Faster convergence can be obtained with a large value of learning 

rate, but it results in network oscillations. While a slower convergence is attained 

with a small value of learning rate with a more stable process. Similarly, for higher 

values of momentum coefficient, the connection weights are rapidly updated in the 

correct direction and improve the convergence.  

The selection of the number of hidden layer neurons is very important and 

troublesome. If the number of the hidden layer neuron is fewer, the neural networks 

cannot receive all necessary information of the modeling system and have less 

tolerance on faults, so that it gives a wrong output. On the contrary, the neural 

networks may cause a phenomenon called “overfitting”. The reason that RBFNN 

outperforms the conventional MLPNN is due to the fact that RBFNN has the 

advantage of handling the augmented new training data without requiring retraining. 

The linear output layer and a hidden layer of RBFNNs have the capability of adapting 

the connection weights efficiently without getting stuck in the local minimum.  

The detailed network parameters are presented along with the training and 

testing patterns. For each case under study, the actual and forecasted load demand 

values are presented which shows that the forecasted values are following the actual 

load values. Finally, has many applications including energy purchasing, 

generation and control, load switching, and infrastructure development [25-38]. 

6. Conclusion 

This study offers the application of RBFNN for STPLF for the Iraqi national grid 

for three different cities (Baghdad, Basra, and Mosul). In this work, the modeling 

and design of NN architecture for STPLF purposes have been examined and 

successfully implemented.  

The obtained results demonstrated the effectuality of the proposed RBFNN 

technique. The RBFNN was subjected to several training sessions with a varying 

number of training cycles. After each experimentation, the RBFNN was verified 

for its capability to correctly forecast the tested data.  

From the implementations of the proposed RBFNN model, it can be concluded 

that among other methods of STPLF, the RBFNN has been established as an 

encouraging tool in energy system load forecasting problem solutions.  

The forecasting reliabilities of the RBFNN were evaluated by computing the 

mean square error (MSE) between the exact and predicted values.  

Moreover, the RBFNN model with the developed structure can perform 

accurate load forecasting with minimum MSE, and this neural network could be an 

important tool for short-term power load forecasting.  

Finally, the results strongly indicated that the RBFNN model performs better 

than the MLPNN model. The RBFNN model can also compute reliability measures 

which is an added advantage of the RBFNN model. Therefore, RBFNN is more 

suitable for the applications in the design of load forecasting instruments.  

Future work includes adding weather condition and changes in temperature, 

humidity, and other factors that influence consumption.  
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Nomenclatures 
 

𝑐𝑖 Center of the Gaussian potential function 

𝑑𝑗 Euclidean distance between 𝑥𝑝𝑖 and weight vectors (𝑐𝑗𝑖) 

ℎ𝑙𝑛 Number of hidden layer neurons 

𝑖𝑙𝑛 Number of input patterns 

𝑂𝑘𝑝 kth output node 

tk Targeted output for kth the output layer neuron 

𝑦𝑘  kth output of the output layer neuron 
 

Greek Symbols 

𝛽 Adapting rate parameter 

𝜎𝑖 Width of the Gaussian potential function 

𝜔𝑘𝑗  Weight between the kth output layer neuron and  the jth hidden 

layer unit 

𝜔𝑘𝑗  Weight between kth output node and  jth RBFNN unit 

𝜔𝑘𝑜  Bias term at the kth output node 
 

Abbreviations 

ANNs Artificial Neural Networks 

MLPNN Multi-Layer Perceptron NN 

PLF Power load forecasting 

RBFNN Radial Basis Function NN 

STPLF short-term power load forecasting 
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