

كلية الرشيد الجامعة قسم هندسة تقنيات الحاسوب

المرحلة الثانية اسس الاتصالات

مدرس المادة : م.م تميم محمد

COMMUNICATION FUNDAMENTAL

THEORY AND PROBLEM OF SIGNAL AND SYSTEM

Weeks	Syllabus
1 st ,2 nd ,3 rd	Introduction to Signals and Systems: Test signals definition, signal
	classification ("Energy-Power", "Periodic-Non periodic", "Random-
	Time imposing Council "Deplicable" and New Council" New performation
	System (Frequency) Transfer Function Operation System Composition and
	their general Frequency Transfer function.
4 th .5 th .6 th	Signal representation using Fourier Series: Complex (exponential) and
	Discrete forms, Signal Spectrum (Amplitude and Phase), Power Spectral
	Density "PSD", Parceval's theorem for power signals, Steady state Response
	for periodic signals, Spectrum for standard trigonometric functions
7 th ,8 th ,9 th	. Signal Spectrum using Fourier Transform, "Fourier and Inverse Fourier"
	Transform relationship, Signal Spectrum (Amplitude and Phase), Fourier
	Transform Pairs for selected functions, Properties of Fourier Transform,
	Energy Spectral Density "ESD", Parceval's theorem for Energy signals.
and a duration	Steady State System Response for Non-periodic signals.
10",11",12"	Filters: Filtering action, Filters Classification based on (response:" ideal &
	practical and mode), characteristics of filters response: Butterworth and
	curve for LPE HPE Passive (lummad alamente) Filters (PC PL PLC) and
	their response. Active Filters and Design Procedure. Frequency
	Transformation with circuits implementation.
13 th .14 th .15 th	Amplitude Modulation: DSBSC Generation. Ouadrature Multiplexing.
.16 th .17 th	DSBSC Detection, Large Carrier AM Generation, Power Calculation and
	Detection, Frequency Division Multiplexing "FDM", SSB Modulation and
	Demodulation, Vestigial (VSB) Modulation, Signal - to - Noise Ratio in AM
	Reception. Typical Communication Circuits Design (Transmitter and
	Receiver)
18 th ,19 th ,20 th ,21 th ,22 th	Frequency Modulation: Instantaneous Phase and Frequency, Narrow Band
	FM, Wide Band FM using Bessel Function, Commercial FM Transmission,
	Power Calculation in Angle Modulated Waveforms, Generation of WBFM,
1	Detection for WBFM waveform, Phase Locked Loop "PLL", Signal – to –
1	(Transmitter and Receiver)
23 th 24 th	Noise in communication systems: Noise in AM systems. Noise in FM
	Systems, Noise Figure Concept, Sky Noise Temperature, Equivalent System
1	Noise Temperature

INTRODUCTION

A **System** is a term used to denote an entity that processes or operates on Signal(s) to transform one signal to another

A **signal** is a description of how one parameter varies with another parameter. For instance, voltage changing over time in an electronic circuit,

SIGNAL

• Signal is representing a physical quantity or variable, and typically it contains information about behavior of the phenomenon.

AMPLITUDE

- The peak value of sinusoidal AC **signals** is referred to as **amplitude** starting from the zero line.
- The **amplitude** usually refers to the scalar or vector field size.

AMPLITUDE

- The peak value of sinusoidal AC **signals** is referred to as **amplitude** starting from the zero line.
- The **amplitude** usually refers to the scalar or vector field size.

FREQUENCY

Frequency is the number of occurrences of a repeating event per unit of time.

frequency is the number of cycles per second in an ac sine wave.

Frequency is the rate at which current changes direction per second. It is measured in hertz (Hz), an international unit of measure where 1 hertz is equal to 1 cycle per second.

$$f = \frac{1}{T} \qquad \qquad T = \frac{1}{f}$$

FREQUENCY

frequency is the number of cycles per second in an ac sine wave.

BANDWIDTH

- Bandwidth is a band of frequencies.
- The **bandwidth of a signal** is defined as the difference between the upper and lower frequencies of a signal generated.

 $bandwidth = f_{MAX} - f_{MIN}$

 $20 \text{ kHz} - 20 \text{ Hz} = \sim 20 \text{ kHz}$

~ 500 MHz

 $\sim 4 \text{ kHz}$

phase is a definition of the position of a point in time) on a waveform cycle.

PHASE

