

كلية الرشيد الجامعة قسم هندسة تقنيات الحاسوب

المرحلة الثالثة اسس هندسة السيطرة المحاضرة رقم (۱)

مدرس المادة : م.م تميم محمد

CONTROL ENGINEERING FUNDAMENTAL

<u>REFERENCE</u>

K. OGATA, 'MODERN CONTROL ENGINEERING', 4th Edition, prentice hall, 2002

Weeks	Syllabus
$1^{st}, 2^{nd}$	Introduction To Control Systems, Open And Closed Loop System.
3 rd ,4 th ,5 th ,6 th	Mathematical modeling of physical systems and Transfer Functions, Mathematical Modeling of D.C. Servo Motor.
$7^{\mathrm{th}}, 8^{\mathrm{th}}$	Block diagrams.
9 th ,10 th	Time-domain analysis of closed loop control systems and error analysis
11 th , 12 th	P, PI, PD and PID Modes of Feedback Control, Realization of PID Controller Using Active and Passive Elements.
$13^{th}, 14^{th}$	Stability analysis and Rouths stability Criterion
$15^{\rm th}, 16^{\rm th}, 17^{\rm th}$	Root Locus Technique.
$18^{\text{th}}, 19^{\text{th}}, 20^{\text{th}}$	Analysis of control system in frequency domain and Bode Diagrams
21 th	Design of control systems and Compensation concepts.
$22^{\text{th}}, 23^{\text{th}}, 24^{\text{th}}, 25^{\text{th}}$	Control system design using root locus method.
26 th ,27 th ,28 th , 29 th	Control system design using Bode Diagrams.
30 th	Definitions of Non Linear Systems.

WHAT IS A CONTROL SYSTEM?

A control system consists of subsystems and a process, assembled for the purpose of controlling the output of the process.

- *Control.* Means measuring the value of the controlled variable of the system and applying the manipulated variable to the system to correct or limit deviation of the measured value from a desired value.
- *Plants.* A plant may be a piece of equipment, perhaps just a set of machine parts functioning together, the purpose of which is to perform a particular operation.
- *Processes.* A process is a natural, progressively continuing operation or development marked by a series of gradual changes that succeed one another in a relatively fixed way and lead toward a particular result.

INTRODUCTION

Systems. A system is a combination of components that act together and perform a certain objective. A system is not limited to physical ones.

Feedback Control. Feedback control refers to an operation that, in the presence of disturbances, tends to reduce the difference between the output of a system and some reference input. Here only unpredictable disturbances are so specified, since predictable or known disturbances can always be compensated for within the system

TYPES OF CONTROL SYSTEMS

Open-loop control system (or feed forward control):

The manipulated input variable is generated without measuring the output variable

TYPES OF CONTROL SYSTEMS

Closed-loop control (feedback control): Measurements of the output variable are feedback to the process through the controller. Closed-loop systems are more complex and expensive than open-loop systems.

CLOSE AND CLOSE LOOP EXAMPLE

(a) Open Loop System

